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ABSTRACT: Project cost becomes increasingly variable if many cost items for a 
construction project are correlated, and this can increase the uncertainty of 
completing a project within a target budget.  This work presents a factor-based 
computer simulation model for evaluating project costs given correlations among 
cost items.  Uncertainty in the total cost distribution of an item is transferred to 
several factor cost distributions according to qualitative estimates of the sensitivity 
of each cost item to each factor.  Each cost distribution is then decomposed further 
into a family of distributions (children; costs given factor conditions), with each 
child corresponding to a factor condition.  Correlations are retrieved by sampling 
from the child distributions with the same-condition for a given iteration of the 
simulation. 
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1. INTRODUCTION 

 
Accurately estimating costs is an essential task 
in effectively managing construction projects.  
Each cost component, and thus project cost, is 
variable or probabilistic since future events are 
always uncertain [1].  Project cost becomes 
increasingly variable if several cost items are 
correlated, increasing the uncertainty of 
finishing a project to a target budget.  Current 
research on correlated costs deals with 
theoretical issues concerning in the accuracy of 
correlations.  For example, Touran and Wiser 
used a multivariate normal distribution to 
generate correlated cost variables for a precise 
simulation analysis, assuming that the 
correlation coefficients between variables are 
known [2].  The simulation model of Chau 
employed a percentile-based sampling 
procedure to influence the probability of 
sampling the same quantiles from two 
correlated probability density functions, 
according to whether the given correlation 
coefficient is positive or negative [3].  Finally, 
Ranasinghe highlighted some theoretical 
requirements, such as the conditions required to 
achieve a positive definite correlation matrix 

and the possibility of using an induced 
correlation to define the correlation between 
derived variables [4]. 

 
This paper presents a simulation-based cost 
model that considers correlations between cost 
items [5].  In contrast to existing cost related 
models in incorporating correlations, the 
proposed model is designed to meet the 
following three requirements which are 
considered practical in a cost management tool, 
namely: not requiring excessive input from 
management, introducing correlations 
indirectly (since this correlation information is 
not readily available) [2], and recognizing 
factor-based correlations when they occur in 
the field. 

 
2. THE PROPOSED MODEL 

 
2.1 Breakdown of uncertainty 
 
The proposed model treats the cost of a bill 
item as a random variable.  The cost variable is 
represented by a total cost distribution (that is, 
"grandparent" distribution) that combines a 
base cost with variations resulting from various 
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factors.  Variations owing to a particular factor 
are represented by a cost distribution, a 
"parent" distribution.  The base cost is assumed 
to be deterministic, while the cost distribution 
for each factor is assumed to be a zero-mean 
random variable.  Figure 1 schematically 
depicts this approach to break down the 
uncertainty.  The base cost is taken to be the 
user's best estimate of an item's cost under 
expected factor conditions, and is the expected 
value of the total cost distribution for the item.  
Deviations from the expected value caused by 
various factors are introduced through the cost 
distributions. 
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Figure 1. Breakdown of uncertainty 

 
The model captures correlations by drawing 
cost samples from related portions of the cost 
distributions for cost items that are sensitive to 
a given factor.  For example, the upper part of 
Fig. 2 classifies weather conditions into “better 
than expected,” “normally expected,” and 
“worse than expected.”  Based on these three 
different weather conditions, the weather 
related cost distribution is disaggregated into 
three corresponding child distributions 
(illustrated in the lower half of Fig. 2), namely, 
cost given better than expected weather (that is, 
better than expected weather child), cost given 
normally expected weather (that is, normally 
expected weather child), and cost given worse 
than expected weather (that is, worse than 
expected weather child).  Child distributions 
may also overlap, as presented in Fig. 2.  
Restated, the cost of an item may be the same 
under both better than expected and normally 
expected weather conditions; or the cost with 
normally expected weather conditions may be 
less than the cost with better than expected 
weather. 
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Figure 2. Decomposition of cost distribution 

into costs, given particular factor conditions 
 

A cost model, in which the effect of uncertainty 
is broken down by factor, is derived from the 
unit cost perspective [5].  Following a series of 
derivation [5], Ci the cost of item i, may be 
expressed as  

∑
=

+=
J

1j
)j(i)0(ii ccC  

(1) where ci(0) is the estimated (or base) cost and 
the random variable ci(j), j = 1,..., J, is the cost 
(parent) distribution of cost item i due to factor 
j.  Restated, Equation (1) displays the variations 
in the cost of an item, as a base cost and a 
series of cost distributions for various factors. 

 
The model assumes that the costs of items are 
correlated only through the impact of shared 
factors.  Different factors are assumed to cause 
independent effects.  For example, assume that 
cost item 1 is sensitive to weather and labor, 
and cost item 2 is sensitive to weather and 
equipment.  Only the weather-related cost 
distributions are correlated; the variations 
caused by labor and equipment are assumed to 
be independent.  Then, regardless of the type of 
the marginal distribution of ci(j), the mean and 
variance of the cost of cost item i can be 
derived as [5] 
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(3) 
in which Mi and σi are the mean and standard 
deviation for Ci (the total cost distribution for 
item i), and mi(j) and SDi(j) are the mean and 
standard deviation for ci(j), with SDi(0) = 0.  
The model finds Mi and σi for cost item i, and 
then determines SDi(j).  In the example project 
presented herein, the three-point estimates of 
PERT are used to calculate Mi and σi. 

 
In constructing a family of child distributions to 
represent changes in cost due to factor 
conditions, one goal is to preserve the mean 
and standard deviation of the cost distribution.  
In other words, the mean and standard 
deviation of the combination of the child 
distributions for a family should be the same as 
the mean and standard deviation of the cost 
distribution.  Mathematically, this relationship 
can be represented [5] 
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(5) 
in which H = number of child distributions; 
pj(h)= probability of occurrence for child 
distribution h of factor j; and oi[j(h)] and 
sdi[j(h)] = mean and standard deviation, 
respectively, for child distribution h of factor j 
for cost item i.  Equations (4) and (5) are valid 
for any type of statistical distribution.  Steiner's 
theorem can be directly applied to justify (5) 
[6]. 

 
The mean of the child distribution for a given 
condition is the expected deviation from the 
mean of the cost distribution when the cost item 
is performed under the given condition.  Means 
of child distributions are expressed through a 
variable x, the mean placement.  The mean of 
each child distribution should be confined to a 
range that maintains the variance of the cost 
distribution.  When x is equal to the limit, the 
child distributions will have zero standard 
deviations [5]. 

 
To construct a family of child distributions is to 

determine their means and standard deviations.  
Consider a cost distribution that is sensitive to 
factor j and has a variance of $4 K.  Assume 
that the user chooses the categories of better 
than expected, normally expected, and worse 
than expected conditions to describe the 
conditions of the factor.  Then a family of three 
child distributions should be constructed.  
Assume that the probabilities of occurrence for 
the child distributions are equal; that is, p1 = p2 
= p3 = 1/3.  Thus, based on (4) and (5), the 
mean and variance, respectively, of the 
combined child distributions are 
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(7) 
Assume -o1 = o3 = x and o2 = 0 so that (6) is 
satisfied, and let the child distributions have 
equal standard deviations, then (7) can be 
rewritten as 

4x)3/2(sd 22 =+  
(8) 

The limit of the value of x is found by requiring 
that the variance of the child distribution be 
non-negative.  Namely, 

0x)3/2(4sd 22 ≥−=  
(9) 

Thus, the limit in this case is x ≤ 6  = 2.45 
(limit = 2.45).  In other words, the values of 
2.45 and -2.45 are the two extreme means for 
Child Distributions 1 and 3, respectively.  The 
next step is to select the value of x between 0 
and 2.45.  Instead of specifying the exact value 
of x, the proposed model suggests that the 
value of x be selected according to the level of 
influence of the factor under consideration on 
the cost item under consideration.  In this 
example, assume x is set to one-half of the limit.  
Then x is equal to 1.27.  The properties of this 
family of three child distributions are thus 
Child 1 (p1 = 1/3, o1 = -1.27, sd1 = 1.71), 
Child 2 (p2 = 1/3, o2 = 0, sd2 = 1.71), and 
Child 3 (p3 = 1/3, o3 = 1.27, sd3 = 1.71). 
 
2.2 Qualitative estimates 
 
Cost distributions are derived according to 
subjective information.  Project planners are 
asked to estimate qualitatively the extent to 
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which each factor influences the cost of each 
item.  For example, a cost item would be 
considered to be highly sensitivity to weather if 
its cost varies greatly depending on the weather.  
This approach of qualitative estimates is 
practical because the impact of uncertainties is 
easily expressed linguistically.  No inherent 
restriction is placed on the number of levels of 
influence used for each factor.  The example 
included herein use four levels of influence, 
high, medium, low, and no influence. 

 
2.3 Scale system 
 
A scale system is used to transfer the 
uncertainty associated with total cost 
distribution to the cost distributions based on 
qualitative estimates of the uncertainty 
sensitivity of cost item i to factor j [5][7].  That 
is, 
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where Qi(j) is the qualitative estimate of the 
sensitivity of cost item i to factor j, and wj[Qi(j)] 
is a scale for each level of influence.  For 
example, the values of the estimates of high, 
medium, low, and no sensitivity for factor j can 
be represented by wj[High], wj[Medium], 
wj[Low], and wj[No], respectively.  Ki is an 
adjustment constant that ensures that σ i

2 is 

preserved.  Since wj[Qi(j)] is fixed for a given 
factor j, Ki will be different for each cost item.  
The value of wj[No] is always zero.  The value 
of wj[Qi(j)] is higher when Qi(j) represents a 
higher level of influence.  Consequently, a 
larger portion of the variance is distributed to a 
cost distribution that has a higher sensitivity.   
 
2.4 Sensitivity of project cost to uncertainty 
 
When several cost items for a project are 
sensitive to particular factors, these factors are 
likely to dominate the cost performance of the 
project.  Knowledge of factor-sensitivities gives 
management a better idea of what factors to 
control.  For instance, management should 

focus on carefully scheduling weather-sensitive 
tasks and ensuring adequate equipment is 
available if weather and equipment 
performance exert the biggest influence on 
project cost.  Controlling the factors that 
influence performance improves performance 
more than modifying or changing work 
methods.  This study measures the uncertainty 
sensitivity of each cost item to a given factor 
based on its standard deviation divided by its 
mean.  A project in which a certain factor has a 
high standard deviation is considered highly 
sensitive to that factor (since the mean of 
project cost is equal for each factor), and 
consequently project cost is more likely to be 
affected by a change in that factor. 

 
3. COMPUTER IMPLEMENTATION 
 

In the model, when cost distributions are 
sensitive to the same factor, a sample cost is 
independently drawn from a particular child 
distribution (given a specified probability of 
occurrence) for each cost distribution.  For 
example, if better than expected, normally 
expected, and worse than expected weather are 
equally likely to occur, then one-third of a 
predefined number simulation iterations will 
have cost samples that are simultaneously and 
independently drawn from the better than 
expected weather child distributions; one-third 
will have normally expected weather child 
distributions; and one-third will have worse 
than expected weather child distributions.  A 
simulation language, STROBOSCOPE [8], is 
used to execute the simulation-relevant 
procedure described in the model.  This 
procedure was implemented on a 586 PC with 
64 MB under a 32-bit Windows environment 
(namely, Windows 98).  Making 1,000 analyses 
of twenty-four cost categories of the example 
project took approximately six minutes, which 
is acceptable for research. 

 
4. EXAPME DEMONSTRATION 

 
An example for a building project is used to 
compare the results obtained using the model 
with two analyses that do not consider 
correlations, namely: a standard PERT analysis 
(PERT) and a Monte-Carlo simulation, carried 
out using normally distributed costs with the 
same mean and standard deviation as the 
model’s total cost distribution (W/O 
Correlation Normal).  Meanwhile, three 
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different scale systems (Scales 1, 2, and 3) are 
applied to investigate the effect of the scale 
system.  This project comprises 20 direct-cost 
division items and 4 indirect-cost division items 
(that is, insurance, tax, profit, and contingency).  
The model requires two types of inputs, the 
three-point cost estimates for each division item 
and the qualitative estimates of the sensitivity 
of each division item to various factors.  The 
analyses considered here involve 1,000 
simulation iterations.  The scales of Scale 1 are 
listed in Table 1. 

Table 1. Scales of Scale 1 
  Scales   

F1 ]H[w 1F =16 ]A[w 1F =12 ]L[w 1F =8 ]No[w 1F =0 

F2 ]Yes[w 2F
=12 

  ]No[w 2F =0 

F3 ]H[w 3F =7 ]A[w 3F =5 ]L[w 3F =3 ]No[w 3F =0 

F4 ]H[w 4F =4 ]A[w 4F =3 ]L[w 4F =2 ]No[w 4F =0 

F5 ]H[w 5F =3 ]A[w 5F =2 ]L[w 5F =1 ]No[w 5F =0 

 
where "H", "A", "L", and "No" represent high, 
average, low, and no sensitivity, respectively.  
"Yes" or "No" are used to describe the 
sensitivity of cost items to F2. F1 - F5 represent 
owner approval, weather, material delivery, 
labor, and equipment, respectively. 

 
Meanwhile, the scales for Scales 2 and 3 
(which exaggerate the differences between high, 
medium, and low sensitivities) are displayed in 
Table 2 and Table 3, respectively. 
 

Table 2. Scales of Scale 2 
  Scales   

F1 ]H[w 1F =8 ]A[w 1F =5 ]L[w 1F =1 ]No[w 1F =0

F2 ]Yes[w 2F =8   ]No[w 2F =0

F3 ]H[w 3F =8 ]A[w 3F =5 ]L[w 3F =1 ]No[w 3F =0

F4 ]H[w 4F =8 ]A[w 4F =5 ]L[w 4F =1 ]No[w 4F =0

F5 ]H[w 5F =8 ]A[w 5F =5 ]L[w 5F =1 ]No[w 5F =0

 
Table 3. Scales of Scale 3 

  Scales   
F1 ]H[w 1F = 

100 
]A[w 1F =10 ]L[w 1F =1 ]No[w 1F =0

F2 ]Yes[w 2F =
100 

  ]No[w 2F =0

F3 ]H[w 3F = 
100 

]A[w 3F =10 ]L[w 3F =1 ]No[w 3F =0

F4 ]H[w 4F = 
100 

]A[w 4F =10 ]L[w 4F =1 ]No[w 4F =0

F5 ]H[w 5F = 
100 

]A[w 5F =10 ]L[w 5F =1 ]No[w 5F =0

Results: project cost.  The project costs 
obtained from various analyses (PERT, W/O 
Correlation Normal, With Correlation Scale 1, 
Scale 2, and Scale 3) are compared using 
several metrics, namely the mean, standard 
deviation, minimum and maximum project 
costs.  Table 4 lists the analytical results, and 
yields the following observations: 

 The mean and standard deviations for 
PERT and W/O Correlation Normal are 
approximately the same because of the 
effect of the Central Limit Theorem. 

 The analytical results with and without 
correlation analyses reveal very little 
difference in mean project cost.  Restated, 
the correlation affects the variance rather 
than the expected cost. 

 Correlation produces a project cost that 
may be significantly lower than 
expectations (e.g., $117.96 K for Scale 1 
versus $132K for W/O Correlation 
Normal) or significantly higher than 
expected (e.g., $184.25 K for Scale 1 
versus $167.49K for W/O Correlation 
Normal).  The correlation effect thus has 
the potential to create an unexpected cost 
overrun. 

 The project standard deviations of the 
three With Correlation analyses are 153%, 
137%, and 149% higher than for the W/O 
Correlation Normal analysis for Scales 1, 
2, and 3, respectively.  For this example 
project, the choice of scale systems does 
not markedly affect the analytical results, 
which fact applies even in the case of 
Scale 3 (highlighting the differences 
between sensitivities), because the 
correlation effect determined by Scale 3 is 
enhanced only when most activities have 
high sensitivities to the same factor or 
factors.  It was found out that the 
correlation effect tends to be dominated 
by the lower-sensitivity factor cost 
distributions, rather than the higher-
sensitivity ones.  

 
Results: uncertainty sensitivity.  Table 5 
summarizes the results of uncertainty 
sensitivity to F1, F2, F3, F4, F5, and all factors 
of project cost for different scale systems.  For 
Scales 1 and 2, the project cost is most sensitive 
to F4 (labor), followed by F1, F5, F3, and F2.  
This information tells management that 
controlling the quality and availability of labor 
deserves special attention.  Meanwhile, in Scale 
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3, which increases the difference between high, 
medium, and low sensitivities, F1 becomes the 
most sensitive factor rather than F4.  Notably, 
the PERT and W/O Correlation Normal models 
are unable to provide this type of sensitivity 
information. 
 
Table 4. Comparisons of W/O correlation and 

the model analyses 
 

Project 
 W/O 

Corr. 
 Proposed

model 
 

Cost a PERT Normal Scale 1 Scale 2 Scale 3
Mean 150 b  149.97 150.06 149.69 150.33

Standard 
deviation 

5.69 5.32 13.46 12.63 13.26

Min. cost N/A 132 117.96 118.65 117.05
Maxi. cost N/A 167.49 184.25 184.09 184.38

a The results are evaluated considering all factors. 
b All data are expressed in thousands (K). 

 
Table 5. Effect of scale systems 
 Standard deviation 

Factors Scale 1 Scale 2 Scale 3 
1. Owner approval 7.9857b[2]a 6.8174 [2] 10.8664 [1]
2. Weather 1.5813[5] 1.9488 [5] 1.7313 [5] 
3. Material 

delivery 
2.7240[4] 1.9603 [4] 3.8811 [4] 

4. Labor skills 8.3092[1] 8.9019 [1] 5.7696 [2] 
5. Equipment 

breakdown 
6.7841[3] 5.5836 [3] 4.0056 [3] 

All factors 13.46 12.63 13.26 
a [  ] indicates the rank of the sensitivity with respect 

to a given factor. 
b All data are expressed in thousands (K). 

 
5. CONCLUSIONS 

 
This work has developed a simulation-
facilitated factor-based model that allows 
correlation between cost items to be considered 
in cost analysis.  The model is based upon the 
two-step breakdown of uncertainty.  The 
correlation between cost distributions is caused 
by their sharing the same factor(s).  Correlation 
is introduced by sampling from the child 
distribution representing a given factor 
condition.  The use of qualitative estimates to 
describe the effect of factor-based uncertainty 
should make the user more comfortable in 
providing inputs than other approaches.  Future 
research directions could include exploring 
ways to capture non-Normal cost distributions 
and total cost distributions; implementing time-
dependent and non-time-correlated cost 
variables; and applying the proposed model to 
other practical projects. 

6. ACKNOWLEDGEMENTS 
 

The author thanks Professor Laura Demsetz 
from the College of San Mateo and Professor 
Hojjat Adeli from the Ohio State University for 
their valuable assistance.  Dr. Julio Martinez is 
also commended for making STROBOSCOPE 
available. 

 
7. REFERRENCES 

 
[1] Adeli, H. and Wu, M., “Regularization 
Neural Network For Construction Cost 
Estimation”, Journal of Construction 
Engineering and Management, ASCE, Vol. 124, 
No. 1, pp. 18-24, 1998. 
 
[2] Touran, A. and Wiser, E.D., “Monte Carlo 
Technique With Correlated Random Variables”, 
Journal of Construction Engineering and 
Management, ASCE, Vol. 118, No. 2, pp. 258-
272, 1992. 
 
[3] Chau, K.W., “Monte Carlo Simulation Of 
Construction Costs Using Subjective Data”, 
Construction Management and Economics, Vol. 
13, pp. 369-383, 1995. 
 
[4] Ranasinghe, M., “Impact Of Correlation 
And Induced Correlation On The Estimation Of 
Project Cost Of Buildings”, Construction 
Management and Economics, 18, pp. 395-406, 
2000. 
 
[5] Wang, W-C., “Simulation-Facilitated 
Model For Assessing Cost Correlations”, 
Journal of Computer-Aided Civil and 
Infrastructure Engineering, Vol. 17:5, pp. 368-
380, 2002. 
 
[6] Levin, R.I. and Rubin, D.S., Statistics for 
Management, 5th Edition, Prentice Hall, 
Englewood Cliffs, New Jersey, 1991. 
 
[7] Wang, W-C. and Demsetz L. A., “Model 
For Evaluating Networks Under Correlated 
Uncertainty – NETCOR”, Journal of 
Construction Engineering and Management, 
ASCE, 126(6), pp. 458-466, 2000. 
 
[8] Martinez, J. C., STROBOSCOPE: State and 
Resource Based Simulation of Construction 
Processes, Ph.D. Dissertation, University of 
Michigan, Ann Arbor, Michigan, 1996. 


